Peru
FairMedFM: Fairness Benchmarking for Medical Imaging Foundation Models
The advent of foundation models (FMs) in healthcare offers unprecedented opportunities to enhance medical diagnostics through automated classification and segmentation tasks. However, these models also raise significant concerns about their fairness, especially when applied to diverse and underrepresented populations in healthcare applications. Currently, there is a lack of comprehensive benchmarks, standardized pipelines, and easily adaptable libraries to evaluate and understand the fairness performance of FMs in medical imaging, leading to considerable challenges in formulating and implementing solutions that ensure equitable outcomes across diverse patient populations. To fill this gap, we introduce FairMedFM, a fairness benchmark for FM research in medical imaging.
An Artificial Trend Index for Private Consumption Using Google Trends
Tenorio, Juan, Alpiste, Heidi, Remรณn, Jakelin, Segil, Arian
In recent years, the use of databases that analyze trends, sentiments or news to make economic projections or create indicators has gained significant popularity, particularly with the Google Trends platform. This article explores the potential of Google search data to develop a new index that improves economic forecasts, with a particular focus on one of the key components of economic activity: private consumption (64\% of GDP in Peru). By selecting and estimating categorized variables, machine learning techniques are applied, demonstrating that Google data can identify patterns to generate a leading indicator in real time and improve the accuracy of forecasts. Finally, the results show that Google's "Food" and "Tourism" categories significantly reduce projection errors, highlighting the importance of using this information in a segmented manner to improve macroeconomic forecasts.
Low Precision Local Training is Enough for Federated Learning Binbin Lin
Federated Learning (FL) is a prevalent machine learning paradigm designed to address challenges posed by heterogeneous client data while preserving data privacy. Unlike distributed training, it typically orchestrates resource-constrained edge devices to communicate via a low-bandwidth communication network with a central server. This urges the development of more computation and communication efficient training algorithms. In this paper, we propose an efficient FL paradigm, where the local models in the clients are trained with low-precision operations and communicated with the server in low precision format, while only the model aggregation in the server is performed with high-precision computation. We surprisingly find that high precision models can be recovered from the low precision local models with proper aggregation in the server.
Upping the Game: How 2D U-Net Skip Connections Flip 3D Segmentation
In the present study, we introduce an innovative structure for 3D medical image segmentation that effectively integrates 2D U-Net-derived skip connections into the architecture of 3D convolutional neural networks (3D CNNs). Conventional 3D segmentation techniques predominantly depend on isotropic 3D convolutions for the extraction of volumetric features, which frequently engenders inefficiencies due to the varying information density across the three orthogonal axes in medical imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI). This disparity leads to a decline in axial-slice plane feature extraction efficiency, with slice plane features being comparatively underutilized relative to features in the time-axial. To address this issue, we introduce the U-shaped Connection (uC), utilizing simplified 2D U-Net in place of standard skip connections to augment the extraction of the axial-slice plane features while concurrently preserving the volumetric context afforded by 3D convolutions. Based on uC, we further present uC 3DU-Net, an enhanced 3D U-Net backbone that integrates the uC approach to facilitate optimal axial-slice plane feature utilization. Through rigorous experimental validation on five publicly accessible datasets--FLARE2021, OIMHS, FeTA2021, AbdomenCT-1K, and BTCV, the proposed method surpasses contemporary state-of-the-art models. Notably, this performance is achieved while reducing the number of parameters and computational complexity. This investigation underscores the efficacy of incorporating 2D convolutions within the framework of 3D CNNs to overcome the intrinsic limitations of volumetric segmentation, thereby potentially expanding the frontiers of medical image analysis.
A-FedPD: Aligning Dual-Drift is All Federated Primal-Dual Learning Needs
As a popular paradigm for juggling data privacy and collaborative training, federated learning (FL) is flourishing to distributively process the large scale of heterogeneous datasets on edged clients. Due to bandwidth limitations and security considerations, it ingeniously splits the original problem into multiple subproblems to be solved in parallel, which empowers primal dual solutions to great application values in FL. In this paper, we review the recent development of classical federated primal dual methods and point out a serious common defect of such methods in non-convex scenarios, which we say is a "dual drift" caused by dual hysteresis of those longstanding inactive clients under partial participation training. To further address this problem, we propose a novel Aligned Federated Primal Dual (A-FedPD) method, which constructs virtual dual updates to align global consensus and local dual variables for those protracted unparticipated local clients. Meanwhile, we provide a comprehensive analysis of the optimization and generalization efficiency for the A-FedPD method on smooth non-convex objectives, which confirms its high efficiency and practicality. Extensive experiments are conducted on several classical FL setups to validate the effectiveness of our proposed method.
Invariant Federated Learning for Edge Intelligence: Mitigating Heterogeneity and Asynchrony via Exit Strategy and Invariant Penalty
Hao, Ziruo, Cui, Zhenhua, Yang, Tao, Hu, Bo, Wu, Xiaofeng, Feng, Hui
This paper provides an invariant federated learning system for resource-constrained edge intelligence. This framework can avoid the impact of heterogeneity and asynchrony by exit strategy and invariant penalty. We decompose local information into two orthogonal components to measure the contribution or impact of heterogeneous and asynchronous clients. We propose that the exit of abnormal clients can guarantee the effect of the model on most clients. Meanwhile, to ensure the models' performance on exited abnormal clients and those who lack training resources, we propose Federated Learning with Invariant Penalty for Generalization (FedIPG) based on the invariant orthogonal decomposition of parameters. Theoretical proof shows that FedIPG reduces the Out-Of-Distribution prediction loss without increasing the communication burden. The performance of FedIPG combined with an exit strategy is tested empirically in multiple scales using four datasets. It shows our system can enhance In-Distribution performance and outperform the state-of-the-art algorithm in Out-Of-Distribution generalization while maintaining model convergence. Additionally, the results of the visual experiment prove that FedIPG contains preliminary causality in terms of ignoring confounding features.
Leveraging Environment Interaction for Automated PDDL Translation and Planning with Large Language Models
Large Language Models (LLMs) have shown remarkable performance in various natural language tasks, but they often struggle with planning problems that require structured reasoning. To address this limitation, the conversion of planning problems into the Planning Domain Definition Language (PDDL) has been proposed as a potential solution, enabling the use of automated planners. However, generating accurate PDDL files typically demands human inputs or correction, which can be time-consuming and costly. In this paper, we propose a novel approach that leverages LLMs and environment feedback to automatically generate PDDL domain and problem description files without the need for human intervention. Our method introduces an iterative refinement process that generates multiple problem PDDL candidates and progressively refines the domain PDDL based on feedback obtained from interacting with the environment. To guide the refinement process, we develop an Exploration Walk (EW) metric, which provides rich feedback signals for LLMs to update the PDDL file. We evaluate our approach on 10 PDDL environments. We achieve an average task solve rate of 66% compared to a 29% solve rate by GPT-4's intrinsic planning with chain-of-thought prompting. Our work enables the automated modeling of planning environments using LLMs and environment feedback, eliminating the need for human intervention in the PDDL translation process and paving the way for more reliable LLM agents in challenging problems.
Adaptive Deep Learning for Multiclass Breast Cancer Classification via Misprediction Risk Analysis
Sheeraz, Gul, Chen, Qun, Feiyu, Liu, MD, Zhou Fengjin
Breast cancer remains one of the leading causes of cancer-related deaths worldwide. Early detection is crucial for improving patient outcomes, yet the diagnostic process is often complex and prone to inconsistencies among pathologists. Computer-aided diagnostic approaches have significantly enhanced breast cancer detection, particularly in binary classification (benign vs. malignant). However, these methods face challenges in multiclass classification, leading to frequent mispredictions. In this work, we propose a novel adaptive learning approach for multiclass breast cancer classification using H&E-stained histopathology images. First, we introduce a misprediction risk analysis framework that quantifies and ranks the likelihood of an image being mislabeled by a classifier. This framework leverages an interpretable risk model that requires only a small number of labeled samples for training. Next, we present an adaptive learning strategy that fine-tunes classifiers based on the specific characteristics of a given dataset. This approach minimizes misprediction risk, allowing the classifier to adapt effectively to the target workload. We evaluate our proposed solutions on real benchmark datasets, demonstrating that our risk analysis framework more accurately identifies mispredictions compared to existing methods. Furthermore, our adaptive learning approach significantly improves the performance of state-of-the-art deep neural network classifiers.
MsaMIL-Net: An End-to-End Multi-Scale Aware Multiple Instance Learning Network for Efficient Whole Slide Image Classification
Wen, Jiangping, Wen, Jinyu, Fang, Meie
Bag-based Multiple Instance Learning (MIL) approaches have emerged as the mainstream methodology for Whole Slide Image (WSI) classification. However, most existing methods adopt a segmented training strategy, which first extracts features using a pre-trained feature extractor and then aggregates these features through MIL. This segmented training approach leads to insufficient collaborative optimization between the feature extraction network and the MIL network, preventing end-to-end joint optimization and thereby limiting the overall performance of the model. Additionally, conventional methods typically extract features from all patches of fixed size, ignoring the multi-scale observation characteristics of pathologists. This not only results in significant computational resource waste when tumor regions represent a minimal proportion (as in the Camelyon16 dataset) but may also lead the model to suboptimal solutions. To address these limitations, this paper proposes an end-to-end multi-scale WSI classification framework that integrates multi-scale feature extraction with multiple instance learning. Specifically, our approach includes: (1) a semantic feature filtering module to reduce interference from non-lesion areas; (2) a multi-scale feature extraction module to capture pathological information at different levels; and (3) a multi-scale fusion MIL module for global modeling and feature integration. Through an end-to-end training strategy, we simultaneously optimize both the feature extractor and MIL network, ensuring maximum compatibility between them. Experiments were conducted on three cross-center datasets (DigestPath2019, BCNB, and UBC-OCEAN). Results demonstrate that our proposed method outperforms existing state-of-the-art approaches in terms of both accuracy (ACC) and AUC metrics.